RESEARCH ARTICLE

Prognostic significance of transforming growth factor beta (TGF- β) signaling axis molecules and E-cadherin in colorectal cancer

Pavlos Lampropoulos ·
Adamantia Zizi-Sermpetzoglou · Spyros Rizos ·
Alkiviadis Kostakis · Nikolaos Nikiteas ·
Athanasios G. Papavassiliou

Received: 13 December 2011 / Accepted: 11 January 2012 / Published online: 26 January 2012 © International Society of Oncology and BioMarkers (ISOBM) 2012

Abstract The transforming growth factor beta (TGF-β) signaling pathway has been considered both a tumor suppressor and a cancer promoter. Additionally, downregulation of cell adhesion molecules such as E-cadherin plays an important role in the metastatic potential of colorectal cancer (CRC). The aim of the present study was to evaluate TGFβ, TGF-β type I receptor (TGF-βR1), TGF-β type II receptor (TGF-\(\beta\)R2), Smad4, pSmad2/3, and E-cadherin expression in colorectal carcinoma and to correlate the obtained data with other standard prognostic parameters, such as disease stage, metastases, and patient survival. TGF-\u03b3, TGF-\u03b3R1, TGF-\u03b3R2, Smad4, pSmad2/3, and Ecadherin expression was evaluated immunohistochemically in 195 unrelated CRC specimens and the results subjected to various statistical analyses. TGF-\beta was expressed in 71.28%, TGF-\(\beta\)R1 in 61.0%, TGF-\(\beta\)R2 in 54.4%, Smad4 in 61.5%, pSmad2/3 in 71.3%, and E-cadherin in 50.26% of the colorectal carcinoma samples tested. The correlation of immunoexpression with the clinicopathological parameters of CRC revealed that the high expression of TGF-β and low expression of TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin were correlated with tumor-node-metastasis (TNM) stage of disease. High TGF-β expression and low TGF-\(\beta\)R1, TGF-\(\beta\)R2, Smad4, and pSmad2/3 expression were also correlated with lymph node metastasis. The Kaplan-Meier survival curves demonstrated a clear association of cancer-specific overall survival with high TGF-β, as well as low TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin expression. Our results suggest that TGFβ, TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin are closely related to TNM stage of CRC. Moreover, TGFβ, TGF-βR2, Smad4, pSmad2/3, and E-cadherin emerge as valuable independent biomarkers of prognosis in CRC patients.

P. Lampropoulos (⋈) · S. Rizos First Department of Surgery, "Tzaneio" General Hospital, Athens, Greece e-mail: pav.lampropoulos@gmail.com

A. Zizi-Sermpetzoglou Department of Pathology, "Tzaneio" General Hospital, Athens, Greece

A. Kostakis N. Nikiteas Second Department of Propaedeutic Surgery, University of Athens Medical School, Athens, Greece

A. G. Papavassiliou (

Department of Biological Chemistry,
University of Athens Medical School,
Athens, Greece
e-mail: papavas@med.uoa.gr

Keywords TGF- β signaling \cdot Smads \cdot E-cadherin \cdot Colorectal cancer (CRC)

Introduction

Colorectal cancer (CRC) remains the most common cancer and the second leading cause of cancer mortality in Europe (212,000 deaths, 12.3% of the total) [1]. Several mechanisms have been implicated in colorectal carcinogenesis, including chromosomal and microsatellite instability, serrated pathway and epigenetic mechanisms, different genes related to invasion and metastasis as well as the transforming growth factor beta $(TGF-\beta)/S$ mad signaling pathway. The $TGF-\beta$ pathway

is engaged in a number of biological processes, including cell proliferation, differentiation, migration, and apoptosis [2].

The initiation of TGF- β signaling begins with the binding of TGF- β ligands to TGF- β type II receptor (TGF- β R2), which in turn attracts and activates TGF- β type I receptor (TGF- β R1). TGF- β 1 ligand is the most abundant isoform of the three (TGF- β 1, TGF- β 2, and TGF- β 3) expressed in mammalian epithelium. Smad2 and Smad3 are phosphorylated at the C-terminal serines by the activated TGF- β R1 and form heteromeric complexes with Smad4. Ultimately, Smad2/3–4 complex translocates into the nucleus and binds to specific regulatory elements on target genes [3, 4].

The TGF- β signaling pathway is thought to be both a tumor suppressor and a cancer promoter [5]. TGF- β switches from an inhibitor of tumor cell growth to a stimulator of growth and invasion during human colon carcinoma progression. At present, the precise mechanism by which TGF- β pathway is able to switch from an inhibitor to a stimulator of carcinogenesis is unclear.

Furthermore, TGF-\beta acts as a major inducer of epithelial to mesenchymal transition (EMT) [6]. EMT is a crucial process during embryonic development that allows differentiation of multiple tissues and organs [7]. However, EMT also plays a role in pathological states and cancer progression [8]. Cell-cell adhesions are reduced in cancer. This leads to a loss of contact inhibition of proliferation and escape from growth arrest signaling. In order to metastasize, cancerous cells must escape adhesion from the primary site and proliferate elsewhere. Loss of the cell adhesion molecule Ecadherin is often the primary cause of the scattering of the cells to invasive carcinoma [9]. E-cadherin is one of the cadherins present in epithelial cells, and its binding via catenins to the cytoskeleton forms the functional component of adherens junctions [10]. It has been suggested that there is no relationship between loss of Ecadherin expression and tumor stage or survival in CRC patients [11, 12]. Nevertheless, other studies show an association between loss of E-cadherin expression and decreased survival [13-15].

The aim of this study was to evaluate the association among TGF- β signaling cascade molecules expression, including TGF- β R1, TGF- β R2, Smad4, activated (i.e., phosphorylated) Smad2/3 (pSmad2/3), and E-cadherin, in a well-characterized series of CRC population, and to determine whether they could be used as molecular biomarkers in CRC. Furthermore, we investigated whether the expression of these molecules correlates with recognized clinical and histopathological parameters, such as age, tumor location, stage of the disease, lymph node metastases, and patient survival, in order to define their potential prognostic role.

Patients and samples

Clinical data and pathologic tissue samples were retrieved from "Tzaneio" General Hospital, Pireaus, Greece. A total of 195 unrelated patients with CRC, who were surgically treated with the intention to cure between the years 2005 and 2006, were included in this study. No patient received neoadjuvant chemotherapy or radiotherapy. All patients were born in and living in Greece. All patients gave their informed consent, and the Hospital Review Board approved the protocol of the study.

All samples were formalin-fixed and paraffin-embedded, and the diagnosis of the tumor was established after observing sections stained with hematoxylin and eosin. Clinical and pathological information were entered into a database according to the criteria of tumor-node-metastasis (TNM) classification of the International Union Against Cancer [16]. All patients were followed up immediately after discharge from the hospital, and survival was measured from the date of surgery to the date of death or status at the last follow-up (December 2010). Patients who failed to appear for scheduled appointments during follow-up, or died from other causes unrelated to cancer, were censored and were not included in our study as no data or histological preparations were recorded for them. Surgical mortality was defined as death within 1 month from surgery. Table 1

Table 1 Clinical and histopathological characteristics of colorectal cancer patients (n=195)

Characteristics	Number (%)	
Gender		
Male	103 (52.8)	
Female	92 (47.2)	
Age at diagnosis (years)		
$Mean \pm SD$	68.6 ± 10.4	
Range	36–90	
Tumor location		
Cecum	20 (10.3)	
Ascending	24 (12.3)	
Transverse	11 (5.6)	
Descending	29 (14.9)	
Sigmoid	39 (20.0)	
Rectum	72 (36.9)	
Clinical stage		
I	37 (19.0)	
II	76 (39.0)	
III	58 (29.7)	
IV	24 (12.3)	
Lymph node metastasis		
Yes	75 (38.46)	
No	120 (61.54)	

summarizes the clinical and histopathological characteristics of the 195 CRC patients that were included in our study with a follow-up (median±SD and range) of 56.0±16.7 and 1–72 months, respectively. Sixty-three patients died from cancer-related causes during follow-up.

Immunohistochemical staining and evaluation

Sections from the colorectal adenocarcinoma and normal mucosa at the resection margins were obtained after surgical resection. For every case, one paraffin block containing both cancerous and normal mucosa tissue was selected for the immunohistochemical detection of TGF- β , TGF- β R1, TGF- β R2, Smad4, pSmad2/3, and E-cadherin protein expression.

Three-micrometer-thick sections were mounted onto glass slides coated with aminopropylmethoxysilane, dewaxed in xylene, and rehydrated with graded alcohols. Endogenous peroxidase was blocked with 3% H₂O₂ for 10 min. Before application of the primary antibody, sections were immersed in 10 mM citrate buffer (pH 6.0), rinsed in Tris-buffered saline (TBS), and heated in a microwave oven (650-800 W) for 3 cycles of 5 min each. In order to reduce nonspecific binding of antisera, sections were washed with TBS before application of the following primary antibodies (all purchased from Santa Cruz Biotechnology): antihuman polyclonal TGF-β1 (V) (sc-146, dilution 1:50), rabbit polyclonal IgG TGF-\(\beta\)R1 (V-22) (sc-398, dilution 1:50), rabbit polyclonal IgG TGF-βR2 (L-21) (sc-400, dilution 1:50), mouse monoclonal IgG Smad4 (B-8) (sc-7966, dilution 1:100), goat polyclonal IgG pSmad2/3 (Ser 423/425) (sc-11769, dilution 1:50), and anti-rabbit polyclonal Ecadherin (H-108) (sc-7870, dilution 1:200) against both wild and mutated forms. Sections were subsequently treated with the secondary antibody for 30 min and incubated with avidin-biotin-peroxidase complex for 30 min. Diaminobenzidine was used as a chromogen followed by slight hematoxylin counterstaining.

A TGF- β staining score was determined based on previously published methods [17–19]. TGF- β expression was considered positive whenever >10% of cancer cells were stained and negative if \leq 10% of cancer cells were stained, after investigating the number of cytoplasmic TGF- β staining in ten fields (100 cells/field) under light microscopy.

For the immunohistochemical evaluation of TGF- β R1 and TGF- β R2, a semiquantitative method was used taking into account the intensity of staining and the percentage of cells stained. Thus, a score of 2 (\geq 50% of cells stained with high intensity) was considered positive, while a score of 1 (\geq 5% and <50% cells stained regardless of the intensity of staining, or >50% of cells stained with low or moderate intensity) and a score of 0 (\leq 5% cells stained regardless of the intensity) were considered negative.

The expression of Smad4 was assessed by comparing staining in tumor cells and normal epithelial cells. Tumorous cells which stained as strongly as the normal epithelial cells were considered positive (+). Weaker staining of tumor cells compared with the normal epithelial cells was considered weak (\pm), whereas absence of staining was considered negative (-). A preserved expression of Smad4 was classified if >50% of cells were positive and a reduced expression in all other cases [17].

Similarly, a staining score of $0 \le 10\%$ cells stained regardless of the intensity) was considered negative for Smad4 and pSmad2/3, while a staining score of $1 \ge 10\%$ and $\le 50\%$ cells stained regardless of the intensity, or $\ge 50\%$ cells stained with low or moderate intensity) and a staining score of $2 \ge 50\%$ cells stained with high intensity) were considered positive.

An E-cadherin staining score was considered positive whenever >25% of neoplastic cells had a preserved membranous expression as strong as the normal epithelial cells. A negative score was considered whenever 25% or less of neoplastic cells had preserved expression [20]. Assessments were performed by two independent pathologists who were blinded to the patient's data.

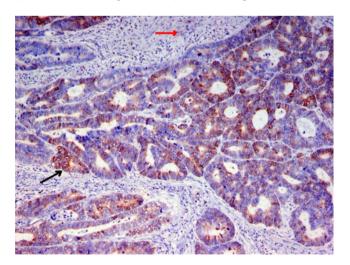
Statistical analyses

All statistical analyses and graphs were performed using MedCalc version 11.5.1.0 (www.medcalc.be) for Windows. Categorical variables were assessed by Student's *t* test or one-way analysis of variance and chi-squared test for continuous and noncontinuous variables as appropriate. Kaplan–Meier survival curves were constructed, and differences in survival between groups were compared using the log-rank test. Survival analysis was carried out by using cancer-specific death as the end point. Multivariable survival analysis was performed using a backward stepwise Cox proportional hazards regression model. A *p* value of 0.05 was considered as a limit for inclusion of a variable.

Results

Expression of TGF- β , TGF- β R1, TGF- β R2, Smad4, and pSmad2/3 in tumor and normal tissue

The 195 CRC specimens displayed a positive cytoplasmic staining reaction for TGF- β in 139 (71.3%) patients, while 56 (28.7%) had a negative staining (Table 2). TGF- β was found mainly in the cytoplasm (Fig. 1), and occasionally, some inflammatory cells were stained in the tumor stroma. In normal mucosa, the intensity of TGF- β staining was weakly positive in cells situated deep within the crypts and became gradually stronger towards the tip of the villi. Both


Table 2 Expression of TGF- β in comparison to clinicopathological parameters

	$TGF-\beta^+$ $n=139$	TGF- β^- n=56	P value
Gender			0.7704
Male	72	31	
Female	67	25	
Age at diagnosis, years			0.9960
≤60	28	12	
>60	111	44	
Tumor location			0.5747
Cecum	14	6	
Ascending	18	6	
Transverse	6	5	
Descending	23	6	
Sigmoid	26	13	
Rectum	52	20	
TNM stage			0.0013
I	24	13	
II	46	30	
III	45	13	
IV	24	0	
Lymph node metastasis			0.0089
Yes	62	13	
No	77	43	

Table 3 Expression of TGF- β R1 in comparison to clinicopathological parameters

- parameters			
	TGF- β R1 ⁺ , $n=119$	TGF- β R1 ⁻ , $n=76$	P value
Gender			0.4368
Male	66	37	
Female	53	39	
Age at diagnosis, years			0.4473
≤60	27	13	
>60	92	63	
Tumor location			0.6544
Cecum	13	7	
Ascending	11	13	
Transverse	7	4	
Descending	21	8	
Sigmoid	24	15	
Rectum	43	29	
TNM stage			0.0408
I	8	29	
II	28	48	
III	29	29	
IV	11	13	
Lymph node metastasis			0.0282
Yes	38	37	
No	81	39	

normal mucosa and cancer cells exhibited a diffuse cytoplasmic pattern of staining. The receptors TGF- β R1 and TGF- β R2 were expressed in cell cytoplasms in 119 (61%) and 106 (54.4%), respectively, of the cancerous specimens (Tables 3 and 4; Figs. 2 and 3). Immunoexpression of these

Fig. 1 Representative results of TGF- β immunostaining in CRC tissue. The image was taken at ×200 magnification. *Black arrow* demarcates cell cytoplasm stained by TGF- β antibody, and *red arrow* demarcates occasional staining of inflammatory cells by TGF- β antibody

receptors in stroma could be detected in cells apparently representing fibroblasts and myofibroblasts.

The common mediator Smad4 displayed a positive staining in the tumor cytoplasm in 120 (61.5%) of the patients, while 75 (38.5%) had a negative staining (Table 5; Fig. 4). Tumor nuclear staining for Smad4 was rarely observed, while normal epithelial mucosa tissue displayed staining but not the lamina propria. pSmad2/3 exhibited a positive nuclear immunoexpression in 121 (62.1%) of the patients (Table 6; Fig. 5). pSmad2/3 was also detected in stromal cells of cancerous tissue.

Expression of E-cadherin in tumor and normal tissue

Altogether, 98 patients (50.26%) were positive and 97 patients (49.74%) were negative for normal E-cadherin staining (Table 7; Fig. 6). The normal colonic epithelium displayed a characteristic evenly distributed staining along the intercellular borders. No nuclear staining could be detected in the normal epithelial cells. In cancerous tissues, abnormal expression of E-cadherin was manifested as weak immunoexpression at the intercellular borders, faint cytoplasmic staining, or complete absence of staining. Occasionally, both membranous and cytoplasmic stainings of weak intensity were observed in cancerous cells.

 $\textbf{Table 4} \quad \text{Expression of TGF-} \\ \beta R2 \text{ in comparison to clinicopathological parameters}$

	TGF- β R2 ⁺ , $n=106$	TGF- β R2 ⁻ , $n=89$	P value
Gender			0.8878
Male	56	47	
Female	50	42	
Age at diagnosis, years			0.5317
≤60	60	16	
>60	46	73	
Tumor location			0.4263
Cecum	12	8	
Ascending	12	12	
Transverse	9	2	
Descending	14	15	
Sigmoid	21	18	
Rectum	38	34	
TNM stage			0.0001
I	25	12	
II	58	18	
III	19	39	
IV	4	20	
Lymph node metastasis			0.0001
Yes	23	52	
No	83	37	

Expression of TGF-β, TGF-βR1, TGF-βR2, Smad4, pSmad2/3 and clinicopathological features

A significant correlation between TGF- β expression and other variables such as age, gender, and tumor location was not determined. However, a significant association between TGF- β expression and conventional prognostic

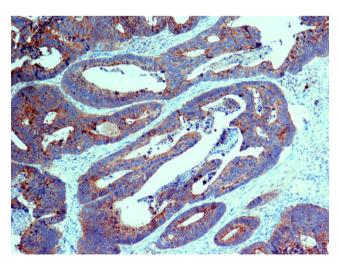


Fig. 2 Representative results of TGF- β R1 immunostaining in CRC tissue. The image was taken at $\times 200$ magnification

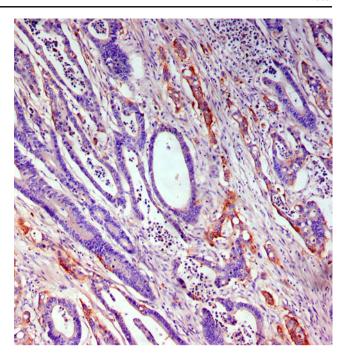


Fig. 3 Representative results of TGF- β R2 immunostaining in CRC tissue. The image was taken at ×200 magnification

Table 5 Expression of Smad4 in comparison to clinicopathological parameters

	Smad4 $^+$, $n=120$	Smad4 $^-$, $n=75$	P value
Gender			0.9729
Male	90	65	
Female	30	10	
Age at diagnosis, years			0.0750
≤60	30	10	
>60	90	65	
Tumor location			0.1876
Cecum	14	6	
Ascending	15	9	
Transverse	9	2	
Descending	21	8	
Sigmoid	23	16	
Rectum	38	34	
TNM stage			0.0299
I	26	11	
II	53	23	
III	31	27	
IV	10	14	
Lymph node metastasis			0.0441
Yes	39	36	
No	81	39	

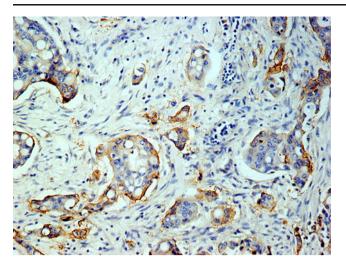
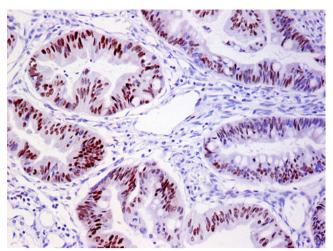
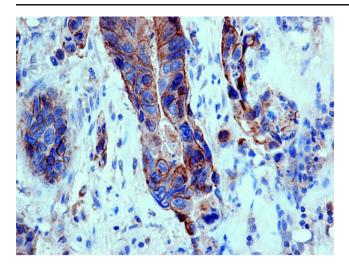



Fig. 4 Representative results of Smad4 immunostaining in CRC tissue. The image was taken at $\times 200$ magnification

factors such as TNM stage (p<0.0013) and lymph node metastasis (p<0.0089) was observed (Table 2). TGF- β immunopositivity was correlated with increasing clinical stage and the presence of lymph node metastasis. Both receptors of the TGF- β signaling pathway, namely TGF- β R1 and TGF- β R2, were not associated with any clinicopathological parameters other than TNM stage and presence

 Table 6
 Expression of pSmad2/3 in comparison to clinicopathological parameters

	pSmad2/3 $^+$, $n=139$	pSmad2/3 $^{-}$, $n=56$	P value
Gender			0.7704
Male	72	31	
Female	67	25	
Age at diagnosis, years			0.9960
≤60	28	12	
>60	111	44	
Tumor location			0.5747
Cecum	14	6	
Ascending	18	6	
Transverse	6	5	
Descending	23	6	
Sigmoid	26	13	
Rectum	52	20	
TNM stage			0.0013
I	24	13	
II	46	30	
III	45	13	
IV	24	0	
Lymph node metastasis			0.0089
Yes	62	13	
No	77	43	


Fig. 5 Representative results of pSmad2/3 immunostaining in CRC tissue. The image was taken at ×200 magnification

of lymph node metastasis (Tables 3 and 4). Increasing TGF- β R1 and TGF- β R2 immunopositivity were correlated with earlier stage carcinomas (p=0.0408 and p<0.0001, respectively) and no lymph node metastasis (p=0.0282 and p<0.0001, respectively). Similarly, Smad4 and pSmad2/3 were correlated with the presence of lymph node metastasis and clinical stage (Tables 5 and 6). Further analysis revealed

 Table 7
 Expression of E-cadherin in comparison to clinicopathological parameters

	E-cadherin ⁺ , <i>n</i> =98	E-cadherin ⁻ , <i>n</i> =97	P value
Gender			0.5160
Male	49	54	
Female	49	43	
Age at diagnosis, years			0.8308
≤60	19	21	
>60	79	76	
Tumor location			0.5310
Cecum	13	7	
Ascending	13	11	
Transverse	6	5	
Descending	13	16	
Sigmoid	16	23	
Rectum	37	35	
TNM stage			0.0253
I	24	13	
II	41	35	
III	26	32	
IV	7	17	
Lymph node metastasis			0.0683
Yes	31	44	
No	67	53	

Fig. 6 Representative results of E-cadherin immunostaining in CRC tissue. The image was taken at ×400 magnification

that the patients with preserved Smad4 and/or pSmad2/3 immunoexpression had earlier stage CRC (p=0.0299 and p=0.0013, respectively) and absence of lymph node metastasis (p=0.0441 and p=0.0089, respectively). However, Smads were not associated with age, tumor location, and gender.

Expression of E-cadherin and clinicopathological features

No significant association between E-cadherin expression and age, gender, tumor location, and lymph node metastasis was noted. E-cadherin expression was significantly correlated with TNM staging (p=0.0253) and showed a trend for lymph node metastasis but did not reach statistical importance (p=0.0683; Table 7). The absence or reduced E-cadherin expression correlates with advanced-stage colorectal carcinoma.

Clinical outcome and the expression of TGF-β, TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin

During the studied period, there were 63 cancer-related deaths. The univariate analysis demonstrated a significant association between increasing stages of disease (p<0.0001), lymph node metastasis (p<0.0001), and decreased overall cancer-specific survival (data not shown). Survival analysis for TGF- β was performed by grouping patients into two categories (negative expression and positive expression). The estimated cancer-specific overall survival rates for these groups were 86.20% and 55.40%, respectively (p=0.0003). The Kaplan–Meier cancer-specific curve by TGF- β expression demonstrated a clear association of poor cancer-specific overall survival after diagnosis of CRC with high TGF- β expression (Fig. 7a).

There was a significant difference in overall survival and the presence of receptors TGF- β R1 and TGF- β R2 (p=0.0001

and p<0.0001, respectively). Patients with lower receptors' immunoexpression had a worse clinical outcome (Fig. 7b, c). Similarly, patients with lower Smad4 and/or pSmad2/3 expression had a worse prognosis (Fig. 7d, e).

The prognostic value of E-cadherin was analyzed by grouping patients into two groups (positive score/negative score as discussed earlier). The cancer-specific survival rates with respect to these groups were 55.60% for patients with a negative score and 72.90% for patients with a positive score. The Kaplan–Meier graph is provided to show the association of negative immunoexpression of E-cadherin and poor prognosis (Fig. 7f). At multivariate regression analysis, TGF-β, TGF-βR2 (but not TGF-βR1), Smad4, pSmad2/3, and E-cadherin immunoexpression emerge as independent prognostic factors in CRC (Table 8).

Discussion

EMT via TGF- β /Smad pathway has been studied in a variety of cancers [21–24] and other diseases [25, 26]. TGF- β is a tumor suppressor in the early stages of carcinogenesis, and in later stages, it is believed to play a dual role: in a paracrine and in an autocrine manner [27, 28]. In the latter, tumorous cells undergo EMT through TGF- β signaling, and as a result, these cells become more invasive with greater metastatic potential. TGF- β suppresses immune responses of non-transformed cells of tumor masses and augments angiogenesis, leading to progression and metastasis [27, 29].

In the present study, histological sections from a series of colorectal carcinomas were immunostained and underwent TGF- β , TGF- β R1, TGF- β R2, Smad4, pSmad2/3, and E-cadherin microscopical examination. TGF- β expression was maintained in 71.3%, TGF- β R1 in 61.0%, TGF- β R2 in 54.4%, Smad4 in 61.5%, pSmad2/3 in 71.3%, and E-cadherin in 50.26% of all cases. Increased TGF- β serum levels have been found to augment the metastatic potential of tumorous cells [30, 31] and to correlate with decreased survival. At the same time, E-cadherin reduced expression correlates with metastasis and poor clinical outcome [32, 33]. However, previous studies have explored the prognostic impact of E-cadherin and reported no significant correlation with survival [34].

Our results demonstrate that TGF- β and its downstream molecules TGF- β R1, TGF- β R2, Smad4, pSmad2/3, and E-cadherin were negatively correlated. TGF- β showed a positive correlation with advanced TNM stage and lymph node metastasis, while TGF- β R1, TGF- β R2, Smad4, pSmad2/3, and E-cadherin showed a negative correlation with advanced-stage and lymph node metastasis. These findings are in agreement with the work of other researchers [35, 36]. However, previous studies suggest that TGF- β has no apparent correlation with stage and lymph node metastasis [37,

Fig. 7 Cancer-specific overall survival of patients after diagnosis of CRC by TGF-β (a), TGF-βR1 (b), TGF-βR2 (c), Smad4 (d), pSmad2/3 (e), and E-cadherin (f) immunoexpression

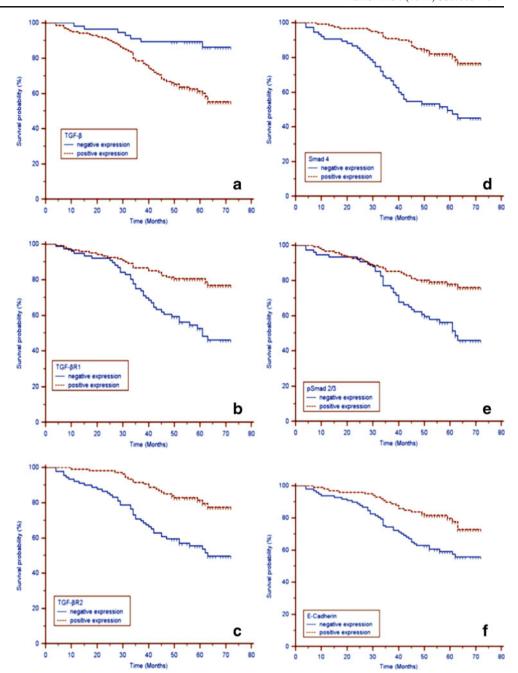


Table 8 Cox proportional hazard estimation analysis

Covariate	b	SE	P	Exp(b)	95% CI of Exp(b)
TGF-β	1.5423	0.4141	0.0002	4.6753	2.0852 to 10.4827
TGF-βR1	-0.5694	0.2959	0.0543	0.5659	0.3178 to 1.0076
TGF-βR2	-0.6051	0.2741	0.0273	0.5460	0.3199 to 0.9318
Smad4	-0.7870	0.3014	0.0090	0.4552	0.2529 to 0.8193
pSmad2/3	-0.7215	0.2625	0.0060	0.4860	0.2913 to 0.8109
E-cadherin	-0,6376	0.2655	0,0163	0.5286	0.3150 to 0.870

The analysis for disease status was performed by grouping patients into four groups (TNM stage I–IV), for markers (TGF- β , TGF- β R1, TGF- β R2, Smad4, pSmad2/3, and E-cadherin) by grouping patients according to positive and negative expression

38], and that TGF- β 1 is related to an increased disease-free and overall survival. We have also shown that there is no significant correlation between TGF- β , TGF- β R1, TGF- β R2, Smad4, pSmad2/3, E-cadherin and other clinicopathological parameters. It was recently demonstrated that Smad4 expression is a common feature in colorectal cancer, in all age group patients, including early-onset colorectal cancer [39].

Our data pose that cancer cells of colorectal tumors in the earlier stages of carcinogenesis are modulated by TGF- β signaling pathway in a tumor suppression fashion; hence, normal activation of the TGF- β cascade occurs with the resulting suppression of EMT and normal expression of E-

cadherin at the intercellular borders of the cells. This signaling maintains the polarity and the integrity of the cells, thus blocking invasion and metastasis. In the advanced stages of carcinogenesis, tumor cells escape the suppressor effects of TGF- β . Indeed, the increased expression of TGF- β observed in our study does not lead to activation of its downstream receptors and effectors in a canonical manner, and a decreased expression of TGF- β R1, TGF- β R2, Smad4, and pSmad2/3 is noted. Conceivably, abnormal TGF- β signaling induces EMT which, in turn, promotes invasion and metastasis of tumor cells through reduced or altered expression of E-cadherin.

The switching of TGF-β signaling from a tumor suppressor to a tumor promoter is crucial in the process of carcinogenesis. TGF-\(\beta\)R2, the receptor which attracts TGF-\(\beta\) at first, has been found to be mutated in 30% of CRC cases [40], and restoration of TGF-βR2 expression results in suppression of tumorigenicity [41]. Recently, a new polymorphic allele of TGF-BR1 with a three-alanine deletion from a nine-alanine stretch in the N-terminus has been described and confirmed to be associated with CRC [42]. Furthermore, the frequency of mutational events of Smad4 gene increases with the progression of carcinogenesis, being 0% in adenomas, 10% in intramucosal carcinomas, 7% in invasive carcinomas without distant metastasis, 35% in primary invasive carcinomas with distant metastasis, and 31% in carcinomas which metastasized to the liver and distant lymph nodes, or disseminated [43]. Moreover, other data revealed that mutations in Smad2 gene are associated with colorectal carcinoma of the sporadic form and suggested that Smad2 could be a candidate tumor suppressor gene [44]. Interestingly enough, there are no Smad3 mutations identified so far in human colon cancer. All the above could be potential mechanisms that drive the TGF-β signaling pathway from a tumor suppressor to a tumor promoter. Another important consideration is the role of TGF-β in colorectal carcinogenesis through pathogenic inflammation. Since colon cancer is driven by inflammation, the role of TGF-β in cancer-associated inflammation remains to be clarified. Nevertheless, additional studies are required to elucidate these important issues.

In summary, TGF- β , TGF- β R2, Smad4, pSmad2/3, and E-cadherin appear to be useful biomarkers of prognosis for patients with CRC. The escape of TGF- β -mediated growth inhibition of tumorous cells as well as the ability of TGF- β to induce EMT through E-cadherin might play a role in tumor progression and metastasis. In the era of targeted anticancer treatment, research efforts in this area might be helpful for future therapeutic approaches with regimens targeted against TGF- β signaling components.

Conflicts of interest None

References

- Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.
- Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.
- Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–40.
- Miyazono K, ten Dijke P, Heldin CH. TGF-beta signaling by Smad proteins. Adv Immunol. 2000;75:115–57.
- Akhurst RJ, Derynck R. TGF-beta signaling in cancer -a doubleedged sword. Trends Cell Biol. 2001;11:S44–51.
- Beach JR, Hussey GS, Miller TE, et al. Myosin II isoform switching mediates invasiveness after TGF-β-induced epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 2011;108:17991–6.
- Sylvie J, Ellen C, Kris V. The role of Wnt in cell signaling and cell adhesion during early vertebrate development. Front Biosci. 2011;17:2352-66.
- 8. Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol. 2011;223:205–18.
- Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198:11–26.
- Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87:992–1005.
- Kinsella AR, Green B, Lepts GC, Hill CL, Bowie G, Taylor BA.
 The role of the cell-cell adhesion molecule E-cadherin in large bowel tumour cell invasion and metastasis. Br J Cancer. 1993;67:904–9.
- Hugh TJ, Dillon SA, Taylor BA, Pignatelli M, Poston GJ, Kinsella AR. Cadherin-catenin expression in primary colorectal cancer: a survival analysis. Br J Cancer. 1999;80:1046–51.
- Dorudi S, Hanby AM, Poulsom R, Northover J, Hart IR. Level of expression of E-cadherin mRNA in colorectal cancer correlates with clinical outcome. Br J Cancer. 1995;71:614–6.
- Karamitopoulou E, Zlobec I, Patsouris E, Peros G, Lugli A. Loss of E-cadherin independently predicts the lymph node status in colorectal cancer. Pathology. 2011;43:133–7.
- Ikeguchi M, Taniguchi T, Makino M, Kaibara N. Reduced Ecadherin expression and enlargement of cancer nuclei strongly correlate with hematogenic metastasis in colorectal adenocarcinoma. Scand J Gastroenterol. 2000;35:839

 –46.
- Sobin LH, Wittenkind C. TNM classification of malignant tumors.
 6th ed. New York: Wiley; 2002. Internatrional Union Against cancer.
- Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res. 2002;8:1838–42.
- 18. Saito H, Tsujitani S, Oka S, et al. The expression of transforming growth factor-beta1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer. 1999;86:1455–62.
- Kinugasa S, Abe S, Tachibana M, et al. Overexpression of transforming growth factor-beta1 in scirrhous carcinoma of the stomach correlates with decreased survival. Oncology. 1998;55:582–7.
- Wu ZY, Zhan WH, Li JH, et al. Expression of E-cadherin in gastric carcinoma and its correlation with lymph node micrometastasis. World J Gastroenterol. 2005;11:3139–43.
- 21. Yu C, Liu Y, Huang D, et al. TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck. Oncol Rep. 2011;25:1581–7.
- Kim AN, Jeon WK, Lim KH, Lee HY, Kim WJ, Kim BC. Fyn mediates transforming growth factor-beta1-induced downregulation of E-cadherin in human A549 lung cancer cells. Biochem Biophys Res Commun. 2011;407:181–4.

- Xu Z, Jiang Y, Steed H, Davidge S, Fu Y. TGFβ and EGF synergistically induce a more invasive phenotype of epithelial ovarian cancer cells. Biochem Biophys Res Commun. 2010;401:376–81.
- Wendt MK, Smith JA, Schiemann WP. Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene. 2010;29:6485–98.
- Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z. TGF-betal induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. 2005;6:56.
- Kim JH, Jang YS, Eom KS, et al. Transforming growth factor beta1 induces epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci. 2007;22:898–904.
- 27. Wieser R. The transforming growth factor-beta signaling pathway in tumorigenesis. Curr Opin Oncol. 2001;13:70–7.
- Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 1998;8:1243–52.
- Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGFbeta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82:85–91.
- Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev. 1995;4:549–54.
- 31. Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110:375–82.
- Faleiro-Rodrigues C, Macedo-Pinto I, Pereira D, Ferreira VM, Lopes CS. Association of E-cadherin and beta-catenin immunoexpression with clinicopathologic features in primary ovarian carcinomas. Hum Pathol. 2004;35:663–9.
- Zhao XJ, Li H, Chen H, et al. Expression of e-cadherin and betacatenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol. 2003;9:225–32.

- 34. Mialhe A, Louis J, Montlevier S, et al. Expression of E-cadherin and alpha-, beta- and gamma-catenins in human bladder carcinomas: are they good prognostic factors? Invasion Metastasis. 1997;17:124–37.
- Pignatelli M, Ansari TW, Gunter P, et al. Loss of membranous Ecadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol. 1994:174:243–8.
- 36. Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen-Dale AL. E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol. 1998;185:262–6.
- Zolota V, Batistatou A, Tsamandas AC, Iliopoulos G, Scopa CD, Bonikos DS. Immunohistochemical expression of TGF-beta1, p21WAF1, p53, Ki67, and angiogenesis in gastric carcinomas: a clinicopathologic study. Int J Gastrointest Cancer. 2002;32:83–9.
- 38. Tsamandas AC, Kardamakis D, Ravazoula P, et al. The potential role of TGFbeta1, TGFbeta2 and TGFbeta3 protein expression in colorectal carcinomas. Correlation with classic histopathologic factors and patient survival. Strahlenther Onkol. 2004;180:201–8.
- Royce SG, Alsop K, Haydon A, et al. The role of SMAD4 in earlyonset colorectal cancer. Colorectal Dis. 2010;12:213–9.
- 40. Xu Y, Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 2007;16:R14–20.
- Wang J, Sun L, Myeroff L, et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995;270:22044–9.
- 42. Pasche B, Kolachana P, Nafa K, et al. TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999;59:5678–82.
- 43. Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun. 2003;306:799–804.
- Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996;86:543

 –52.

